Chapter 1: Intro to Diff. Equations

Some terminology

- A differential equation is any
equation involving a derivative.

- An ordinary differential equation
(ODE) is an equation involving
derivatives relating only two
variables (dependent/independent).

- A partial differential equation
(PDE) is an equation involving partial

derivatives.

We only study ODE’s in this course.

- The order of an ODE is the highest
derivative that appears in the

egua tion.
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Checking Solutions (like 4-6 in HW)

An explicit solution to a differential
equation is a function that satisfies
the equation.
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Example 2: y'"' ——

= 0 has two

solutions that look like y(t) = t".
Find the two values of r.
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Example 3: y'' — y' = 3x has one
solution that look like -
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y(t) = e* +rx + sx2. Find rand .
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Applications/Units (7-10 in HW) Too examtEE k=01 (\ow
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Example:

Let P(t) =“population after t years”.

Assume the population grows at a Fon ExAmILE | Wi |F T
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What if |5'|s in thousands of people? What if t is in days mstééd of years?

P Such at t, = 365t days.
000

Such as P,(t) = thousand

dP . dP
people What is —= — —27 What is d_t;?
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Some Motivation 1. No air resistance, then the only

Air Resistance Example: force is gravity F = -mg

. . . (g =9.8 m/s?).
Assume an object with mass m is ,
_ mv =k, = —mg

dropped from 1000 meters with an .
o . Initial Value Problem (IVP)
initial velocity of v(0) = 0 m/s. o = —g
Recall: Newton’s Law v(0)= 0

ma = F (Force) V=g
If we write a(t) = v'(t) = h''(t), vz -—a48t +C

J(Dzo = 4.8 tc =0
= C =

then we see this leads to an ODE.
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2. Assume air resistance exerts a
force proportional to speed in
the opposite direction.

mv' =F,+Fy= —mg—1v
So
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Mass-Spring Example:

Assume an object with mass m is
attached to a spring that is attached
to a wall. Natural length is the
distance from the wall at which the
mass is at rest (no stretch or push
force). |

Let x = “the distance the spring is
stretched beyond natural length”.

Hooke’s Law says force due to the
spring is proportional to x and in the
opposite direction. In other words,

Force = — kx
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So, once again, if you want to model Aside: This is called a “simple

the motion of the mass after ydu harmonic oscillator” and w is the
stretch it and let go, you use “natural frequency” (radians/time).
Newton’s Law: And 2 /w is the wavelength (time

ma =F = —kx from peak-to-peak)

and a(t) = x"(t)
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Circuits Example: Kirchoff’s laws

SOVOZVR+VC+VL

observe that the sum of the voltage

drops in a circuit equals zero
(source, resistance, capacitance,

inductance).

So —V0+VR+VC+VL:O

with
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